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Critical transition in the constrained traveling salesman problem
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We investigate the finite size scaling of the mean optimal tour length as a function of density of obstacles in
a constrained variant of the traveling salesman prob[€8P. The computational experience pointed out a
critical transition(at p.~85%) in the dependence between the excess of the mean optimal tour length over the
Held-Karp lower bound and the density of obstacles.
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The traveling salesman problefSP consists of finding problem can be computed exactly using linear programming.
the length of the shortest closed tour visitiNgcities. TSP However, the method is not suitable for lafyebecause the
is one of the most widely studied combinatorial optimizationnumber of constraints induced in the linear program is expo-
problemg1,2]. TSP is a classic NP-complete problem, i.e.,nential inN. The exact solution will be the lower bound of
no algorithm exists for solving the problem in polynomial the optimal tour length, called the Held-Karp lower bound
time. TSP is also one of the few combinatorial optimization[10]. By using state-of-the-art computers, combined with the
problems that have been studied extensively in the context dinear programming method and statistical averages over a
statistical physic$3—7]. large number of random Euclidean instances, the expected

The importance of this problem is due to its formulation ratio of the Held-Karp(HK) lower bound toy/N has been
simplicity coupled with its intractability, which has lead to calculated 9] for moderate values dfl and it is given by
the development of a variety of general algorithms for deal-
ing with complex optimization problems. The amount of cal- Chk(N)=0.708 05+0.522 20~ *°+1.315 7N !
culation required for finding the exact solution of an NP- _15

: . . ; —3.074 7N 12, 4

complete problem increases exponentially with problem size.

To cope with this difficulty, global optimization schemes CaNThe error in the above formula is less than 0.1%. Obviously,

be used to find reasonable solutions of these problems. Stg: expected Held-Karp lower bound ¢ is approaching a
chastic methods like simulating annealing provide a pr0ba'constantc<,8 as N—s oo

bilistic guarantee of convergence upon a glo_bal m_inimum The Held-Karp constar@,,(N) has become the standard
7] FO!’mel"y, the Symm_etf'c Euc_lldean TSP is deflnzed %est for evaluating the performance of various heuristic algo-
follows: given a set of distinct pomtﬁpi=(xi Vi) elOI%  fithms proposed to solve the TSP. The practical computa-
i=1..N}, we find a permutationm={m(1),... m(N)} of  4jopq) strategy consists of evaluating the average of the heu-
P={1....N} that minimizes the tour length ristic optimal tour length{L,,(N)), for a large number of

N N-city random Euclidean instances, and to compute the ex-
L(m)=2, d(Pai P af(i+ 1modN)])» (1)  cess over the Held-Karp lower bound, as follows:
i=1
(Lop(N))N—0°
e(N)=| —=———1|X100%. 5
where (N) Conc(N) )

APty 1Pr()) = N Kty = Xer(1) 2+ V) =Y1))® (@ 1y this work we study a constrained variant of TSP. The
constrained model considered here is mainly motivated by
the obstacle avoidance problem in robot navigation. The task
of the robot is to find the shortest closed tour visithgities
(goals in an environment with obstacles.

Formally, the constrained TSP can be defined as follows:
given a set of obstacles

is the Euclidean distance between a pair of points.

It has been showf8] that in the largeN limit the optimal
tour length for a given instande, is self-averaging up to a
scaling factor

. I-opt_
AI,'T@JN_B’ ® [0C[0,1]2, k=1,..M}

where convergence to the instance-indepenggris with ~ and a set of distinct pointities, goalg
probability 1 in the ensemble of instances with randomly "
dl_strlbuted C|t|_es._Recent computational experiments suggest pi=(x,y) e[0,1?— U O,, i=1,.Nl,
this constant ig8=0.7124(5,9]. k=1
TSP can also be formulated as a linear program based on
the interpretation of the optimal tour as a minimum-lengthwe find a permutationr={m(1),...,m(N)} of P={1,...N}
Hamiltonian circuit in the complete graph with cities as ver-that minimizes the closed tour length visiting all the cities. In
tices[10]. For instances of moderate size the solution to thishe above definition, the constraints are introduced by the
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circular objectO, if the smallest distance fromx(,y,) to

the line is less tham. This is calculated in two steps. First
we try to trivially reject the intersection by checking if the
rectangle spanned by the segment intersects with the circular
obstacle; if it does not, we know that there is no intersection.
If the rectangle and the circle intersect, we have to check the
distance between the line and the centeDgfto see if it is

less than the radius @, . If it is, we have an intersection.

From the above considerations it follows that the con-
strained TSP requires a significant increase of the computa-
tion effort compared to the standard TSP. However, this ef-
fort is substantially reduced if the matrices=[d;;] andc
=[c;;] are calculated at the beginning of the algorithm.

The best heuristics for TSP atecal search[11] and
simulated annealing[7]. These algorithms typically get
about 1% of the optimal tour lengtf2]. These successes
leave less room for the development of other new heuristic
algorithms. For our numerical simulation purposes, we have
used a combination of these two approaches.

Simulated annealingSA) is a general method of optimi-
zation. In case of TSP, one starts with a “solution” given by
the nearest-neighbor algorithm. A new solution is con-
structed by imposing a random permutation of cities. If the
cost of a new statéhe length of the toyris lower than that
of the previous one, the change is accepted unconditionally
and the system is updated. If the cost is greater, the new
solution is accepted with the probability expfL/T). This is
the Monte Carlo step, the fundamental procedure of SA. Re-
peated applications of the Monte Carlo step result in a Bolt-
zmann distribution of microstates. As the temperature pa-

FIG. 1. A constrained TSP instance with 100 cities. rameterT is decreased, this procedure allows the system to
move consistently towards lower cost states, yet still
intersections between the segments connecting distinct pairffump” out of local minima due to the occasional accep-
of cities and the obstacles. Obviously, these intersections atence of an upward move. If the temperature is decreased
not allowed and they must be penalized somehow. The corlegarithmically, SA guarantees an optimal solution with a
strained TSP cost function can be written as follows: nonzero probability. However, a logarithmic schedule is
quite slow and in practice one uses cooling schedules that

" drop the temperatures much more rapidly s where 0
|—(7'F)=§4l [d(Par(iy 1P i+ 1)mod Ny ) <y<1 andt is the time step. This can be obtained, for
instance, by performing a fixed number of trials at each tem-
+C(P iy s Paf(i + Dmod ) 1 (6) perature, after which one declares “equilibrium” and re-

. ~ duces the temperature by a standard fagtddnder such an
where the supplementary costs, or the penalties, are definggponential cooling regime, the temperature will after a

by polynomially bounded amount of time reach values suffi-
_ . _ " ciently close to zero that uphill moves will no longer be

0 if o(m(i),m(j)N(Uy=10) =L accepted and one can declare “freezing” to have set in. With

C(Pa(i) 1Pa()) = W otherwise ' such a polynomially bounded cooling schedule, SA is only

(7) an approximation algorithm.
We have used an exponential cooling schedule with the

Here o(m(i),m(j)) is the segment connecting the pair of initial temperature given byl,=1.5N"2° as suggested in
cities (7(i),7(])) andw>0 is the constant penalty intro- [2]. The final temperature was fixed I =0.001 and the
duced when this segment intersects at least one obstacle. total number of temperatures was also fixedMo=25. It

An example of constrained TSP is given in Fig. 1. Here,follows that the discount factor is given by=(T;/Ty)*M.
the obstacles correspond to an array structure of circular obFhe temperature lengttthe number of steps at a given tem-
jects(diskg and an intersection was penalized witt=v2. peraturg was calculated using the following simple adapting
Let Oy be a circular obstacle at positiox,(y,) with the  scheme: aN(N—1)(2—T/Ty).
radiusR and leto (7 (i), (j)) be the segment connecting the  In our SA implementation the “new solutions” were gen-
POINtS P iy = (Xa(i) »Yn(j)) @NA Py = (Xr(j) Y(j)), F€SPEC-  erated by using a randofequiprobablg selection between
tively. The line containing the segmemthas intersected the the 2-Opt and 3-Opt moves such as in the local-optimization
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TABLE |. Excess over the Held-Karp lower bound for SA al- 1000 ﬂT_
gorithm. 900 4
N () (%) (@=1) (&) (%) (a=10) (&) (%) (a=10°) 800 -
10° 251 1.58 0.95 700 4
5x 107 2.84 1.83 1.17 600 4 ¢
10 3.17 2.06 1.25 S
~ 500 -1
400 e
heuristics. The 2-Opt move deletes two edges, thus breaking 1
the tour into two paths, and then reconnects those paths in '
the other possible way. In 3-Opt moves, the exchange re-
places up to three edges of the current tee[1,2] and
[11] for detaily. In Table | we give the excess over the
Held-Karp lower bound5) for our SA implementation. -

We have applied the above SA algorithm in the case of
constrained TSP by computing the dependence between the
excess of the mean optimal tour length over the Held-Karp p (%)
lower bound and the density of obstacles. Because of the
larger CPU time consuming in constrained TSP and because FIG. 2. The dependence between the excess of the mean optimal
we need to generate good statistical results, there is necesur length over the Held-Karp lower bound and the density of
sarily a tradeoff in the choice dfl and in the method used obstacles.
for generating obstacles. We have chosen an average value L .
N=10?, for which we were able to generate?l@nstrained Cdl’ﬂﬁ?‘;"g IS ?Ot depﬁndln% du ted and solved usi
TSP instances for each density of obstacles. The obstacl%% Instances nave been generated and solved using

. . . . . independent parallelism strategy, i.e., using different ini-
density was simulated by introducing rand¢symmetrical tial conditions and different random streams on each proces-

penaliies in the cost f_uncUo«jﬁ). For a given density, the sor (Compag Alpha cluster, €+/TruUnix64). For densities
number of randomly introduced pgnaltles was computed aﬁrger than the critical valup> p. the algorithm is not ca-
pN(N—l)_/2. We have chosen a high value f_o_r the per?"’_‘Ity’pable of finding the shortest tour and large penalties are in-
w=Vv2N, in order to see exactly where the critical transition ,,;ced in the cost function. However, this critical value is

is. This meand times the maximum possible distance in the ey high and the robot will be able to find a shortest closed
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unit square. . . N tour even in a very cluttered environment.
The results of the computation are given in Fig. 2. One
can see the sharp transition startingoat=85% in the de- This work has been supported through a grant to M. K.

pendence between the excess of the mean optimal tour lengitli from the Defense Research Establishment Suffield under
over the Held-Karp lower bound and the density of ob-Contract No. NO-W7702-8-R745/001/EDM. The authors
stacles. We have obtained the same resultNernx10°  would also like to thank Dr. Simon Barton for his continuing

(n=2,3,...10). In this case we have to check just for support and helpful discussions. Computing facilities were
=80,81,...,90 % and ten constrained TSP instances for eagirovided by Multimedia Advanced Computational Infra-

density of obstacles. This result shows that the obtained critistructure(MACI).
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