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Critical transition in the constrained traveling salesman problem
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Department of Physics, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4

~Received 12 October 2000; published 27 March 2001!

We investigate the finite size scaling of the mean optimal tour length as a function of density of obstacles in
a constrained variant of the traveling salesman problem~TSP!. The computational experience pointed out a
critical transition~at rc'85%! in the dependence between the excess of the mean optimal tour length over the
Held-Karp lower bound and the density of obstacles.
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The traveling salesman problem~TSP! consists of finding
the length of the shortest closed tour visitingN cities. TSP
is one of the most widely studied combinatorial optimizati
problems@1,2#. TSP is a classic NP-complete problem, i.
no algorithm exists for solving the problem in polynomi
time. TSP is also one of the few combinatorial optimizati
problems that have been studied extensively in the contex
statistical physics@3–7#.

The importance of this problem is due to its formulati
simplicity coupled with its intractability, which has lead t
the development of a variety of general algorithms for de
ing with complex optimization problems. The amount of c
culation required for finding the exact solution of an N
complete problem increases exponentially with problem s
To cope with this difficulty, global optimization schemes c
be used to find reasonable solutions of these problems.
chastic methods like simulating annealing provide a pro
bilistic guarantee of convergence upon a global minim
@7#. Formally, the symmetric Euclidean TSP is defined
follows: given a set of distinct points$pi5(xi ,yi)P@0,1#2,
i 51,...,N%, we find a permutationp5$p(1),...,p(N)% of
P5$1,...,N% that minimizes the tour length

L~p!5(
i 51

N

d~pp~ i ! ,pp@~ i 11!mod~N!#!, ~1!

where

d~pp~ i ! ,pp~ j !!5A~xp~ i !2xp~ j !!
21~yp~ i !2yp~ j !!

2 ~2!

is the Euclidean distance between a pair of points.
It has been shown@8# that in the large-N limit the optimal

tour length for a given instanceLopt is self-averaging up to a
scaling factor

lim
N→`

Lopt

AN
5b, ~3!

where convergence to the instance-independentb is with
probability 1 in the ensemble of instances with random
distributed cities. Recent computational experiments sug
this constant isb50.7124@5,9#.

TSP can also be formulated as a linear program base
the interpretation of the optimal tour as a minimum-leng
Hamiltonian circuit in the complete graph with cities as ve
tices@10#. For instances of moderate size the solution to t
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problem can be computed exactly using linear programm
However, the method is not suitable for largeN because the
number of constraints induced in the linear program is ex
nential inN. The exact solution will be the lower bound o
the optimal tour length, called the Held-Karp lower bou
@10#. By using state-of-the-art computers, combined with
linear programming method and statistical averages ove
large number of random Euclidean instances, the expe
ratio of the Held-Karp~HK! lower bound toAN has been
calculated@9# for moderate values ofN and it is given by

CHK~N!50.708 0510.522 29N20.511.315 72N21

23.074 74N21.5. ~4!

The error in the above formula is less than 0.1%. Obvious
the expected Held-Karp lower bound toAN is approaching a
constantC,b asN→`.

The Held-Karp constantCHK(N) has become the standar
test for evaluating the performance of various heuristic al
rithms proposed to solve the TSP. The practical compu
tional strategy consists of evaluating the average of the h
ristic optimal tour length,̂ Lopt(N)&, for a large number of
N-city random Euclidean instances, and to compute the
cess over the Held-Karp lower bound, as follows:

«~N!5F ^Lopt~N!&N20.5

CHK~N!
21G3100%. ~5!

In this work we study a constrained variant of TSP. T
constrained model considered here is mainly motivated
the obstacle avoidance problem in robot navigation. The t
of the robot is to find the shortest closed tour visitingN cities
~goals! in an environment with obstacles.

Formally, the constrained TSP can be defined as follo
given a set of obstacles

$Ok,@0,1#2, k51,...,M %

and a set of distinct points~cities, goals!

H pi5~xi ,yi !P@0,1#22 ø
k51

M

Ok , i 51,...,NJ ,

we find a permutationp5$p(1),...,p(N)% of P5$1,...,N%
that minimizes the closed tour length visiting all the cities.
the above definition, the constraints are introduced by
©2001 The American Physical Society03-1
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intersections between the segments connecting distinct p
of cities and the obstacles. Obviously, these intersections
not allowed and they must be penalized somehow. The c
strained TSP cost function can be written as follows:

L~p!5(
i 51

N

@d~pp~ i ! ,pp@~ i 11!mod~N!#!

1c~pp~ i ! ,pp@~ i 11!mod~N!#!#, ~6!

where the supplementary costs, or the penalties, are de
by

c~pp~ i ! ,pp~ j !!5H 0 if s„p~ i !,p~ j !…ù~øk51
M Ok!5B

w otherwise
.

~7!

Here s„p( i ),p( j )… is the segment connecting the pair
cities „p( i ),p( j )… and w.0 is the constant penalty intro
duced when this segment intersects at least one obstacl

An example of constrained TSP is given in Fig. 1. He
the obstacles correspond to an array structure of circular
jects ~disks! and an intersection was penalized withw5&.
Let Ok be a circular obstacle at position (xk ,yk) with the
radiusR and lets„p( i ),p( j )… be the segment connecting th
points pp( i )5(xp( i ) ,yp( j )) and pp( j )5(xp( j ) ,yp( j )), respec-
tively. The line containing the segments has intersected the

FIG. 1. A constrained TSP instance with 100 cities.
04710
irs
re
n-

ed

,
b-

circular objectOk if the smallest distance from (xk ,yk) to
the line is less thanR. This is calculated in two steps. Firs
we try to trivially reject the intersection by checking if th
rectangle spanned by the segment intersects with the circ
obstacle; if it does not, we know that there is no intersecti
If the rectangle and the circle intersect, we have to check
distance between the line and the center ofOk to see if it is
less than the radius ofOk . If it is, we have an intersection.

From the above considerations it follows that the co
strained TSP requires a significant increase of the comp
tion effort compared to the standard TSP. However, this
fort is substantially reduced if the matricesd5@di j # and c
5@ci j # are calculated at the beginning of the algorithm.

The best heuristics for TSP arelocal search @11# and
simulated annealing@7#. These algorithms typically ge
about 1% of the optimal tour length@2#. These successe
leave less room for the development of other new heuri
algorithms. For our numerical simulation purposes, we h
used a combination of these two approaches.

Simulated annealing~SA! is a general method of optimi
zation. In case of TSP, one starts with a ‘‘solution’’ given b
the nearest-neighbor algorithm. A new solution is co
structed by imposing a random permutation of cities. If t
cost of a new state~the length of the tour! is lower than that
of the previous one, the change is accepted uncondition
and the system is updated. If the cost is greater, the
solution is accepted with the probability exp(2DL/T). This is
the Monte Carlo step, the fundamental procedure of SA.
peated applications of the Monte Carlo step result in a B
zmann distribution of microstates. As the temperature
rameterT is decreased, this procedure allows the system
move consistently towards lower cost states, yet s
‘‘jump’’ out of local minima due to the occasional accep
tance of an upward move. If the temperature is decrea
logarithmically, SA guarantees an optimal solution with
nonzero probability. However, a logarithmic schedule
quite slow and in practice one uses cooling schedules
drop the temperatures much more rapidly asg t, where 0
,g,1 and t is the time step. This can be obtained, f
instance, by performing a fixed number of trials at each te
perature, after which one declares ‘‘equilibrium’’ and r
duces the temperature by a standard factorg. Under such an
exponential cooling regime, the temperature will after
polynomially bounded amount of time reach values su
ciently close to zero that uphill moves will no longer b
accepted and one can declare ‘‘freezing’’ to have set in. W
such a polynomially bounded cooling schedule, SA is o
an approximation algorithm.

We have used an exponential cooling schedule with
initial temperature given byT051.5N20.5 as suggested in
@2#. The final temperature was fixed toTf50.001 and the
total number of temperatures was also fixed toM525. It
follows that the discount factor is given byg5(Tf /T0)1/M.
The temperature length~the number of steps at a given tem
perature! was calculated using the following simple adapti
scheme: aN(N21)(22T/T0).

In our SA implementation the ‘‘new solutions’’ were gen
erated by using a random~equiprobable! selection between
the 2-Opt and 3-Opt moves such as in the local-optimizat
3-2
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BRIEF REPORTS PHYSICAL REVIEW E 63 047103
heuristics. The 2-Opt move deletes two edges, thus brea
the tour into two paths, and then reconnects those path
the other possible way. In 3-Opt moves, the exchange
places up to three edges of the current tour~see@1,2# and
@11# for details!. In Table I we give the excess over th
Held-Karp lower bound~5! for our SA implementation.

We have applied the above SA algorithm in the case
constrained TSP by computing the dependence between
excess of the mean optimal tour length over the Held-K
lower bound and the density of obstacles. Because of
larger CPU time consuming in constrained TSP and beca
we need to generate good statistical results, there is ne
sarily a tradeoff in the choice ofN and in the method use
for generating obstacles. We have chosen an average v
N5102, for which we were able to generate 102 constrained
TSP instances for each density of obstacles. The obsta
density was simulated by introducing random~symmetrical!
penalties in the cost function~6!. For a given densityr, the
number of randomly introduced penalties was computed
rN(N21)/2. We have chosen a high value for the pena
w5&N, in order to see exactly where the critical transiti
is. This meansN times the maximum possible distance in t
unit square.

The results of the computation are given in Fig. 2. O
can see the sharp transition starting atrc'85% in the de-
pendence between the excess of the mean optimal tour le
over the Held-Karp lower bound and the density of o
stacles. We have obtained the same result forN5n3102

(n52,3,...10). In this case we have to check just forr
580,81,...,90 % and ten constrained TSP instances for e
density of obstacles. This result shows that the obtained c

TABLE I. Excess over the Held-Karp lower bound for SA a
gorithm.

N ^«& (%) (a51) ^«& (%) (a510) ^«& (%) (a5102)

102 2.51 1.58 0.95
53102 2.84 1.83 1.17

103 3.17 2.06 1.25
b
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cal density is not depending onN.
All TSP instances have been generated and solved u

an independent parallelism strategy, i.e., using different
tial conditions and different random streams on each proc
sor ~Compaq Alpha cluster, C11/TruUnix64!. For densities
larger than the critical valuer.rc the algorithm is not ca-
pable of finding the shortest tour and large penalties are
troduced in the cost function. However, this critical value
pretty high and the robot will be able to find a shortest clos
tour even in a very cluttered environment.
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FIG. 2. The dependence between the excess of the mean op
tour length over the Held-Karp lower bound and the density
obstacles.
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